Calculations Policy
 2022-23

	Document Status			
Date of Next Review		Responsibility	Full Governing Body	
Success Criteria for review completion		Responsibility	Headteacher/Chair of Governors	
Date of Policy Creation	June 2022	Responsibility	Chair of Governors	
Date of Policy Adoption by Governing Body	Signed: Headteacher.. Date: Chair of Governors................................. Date:			
Method of Communication: School Website				

Statement of Intent

At North Duffield Primary School, we work with relentless consistency to enable all our children to achieve our school vision, "Growing Learners for Life," Every child will make good or better progress through the high-quality teaching they will receive, and their engagement with our diverse, absorbing and exciting curriculum which provides appropriate and relevant enrichment experiences.

We model and promote an inclusive ethos so our learners are flexible, imaginative, responsible and confident life-long learners, who value "Rights, Respect, Responsibility and Independence." The fundamental British values of democracy, the rule of law, individual liberty, mutual respect and tolerance of those of different faiths and beliefs, are promoted throughout our school curriculum, and our whole school ethos. This ensures that all children including those with SEND or medical conditions have the same opportunities and expectations placed upon them as all other young people.

Everyone at North Duffield Primary School has the right to feel welcome, secure and happy. It is the responsibility of the Governing Body and Headteacher to ensure that all members of the school community work within a safe and enabling environment. Our policies have been developed in line with the school's vision, aims and values.

This calculations policy reflects the intent of mathematics within the National Curriculum for England and Wales 2013 and how at North Duffield Primary School we will teach calculations. It states:
'The National Curriculum for mathematics aims to ensure that all pupils become fluent in the fundamentals of mathematics... reason mathematically.... and can solve problems....'
'Mathematics is an interconnected subject...Pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems.'

Calculations in Early Years Foundation Stage

Mathematics - Number- addition and subtraction
Children count reliably with numbers from one to 20 , place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.

Calculations within Milestone One:

Using number facts	Recall and use addition and subtraction facts to 20 fluently (Y1), and derive and use related facts up to 100 (Y2).
Complexity	Apply increasing knowledge of mental and written methods. Add and subtract one-digit and two-digit numbers to 20 (Y1), and recording addition and subtraction in columns supports place value and prepares for formal written methods with larger numbers (Y2).

Calculations within Milestone Two:

Using number facts	Solve problems, including missing number problems, using number facts, place value and more complex addition and subtraction			
Complexity	Solve two-step addition and subtraction problems in contexts, deciding which operations and methods to use and why.			
	Y3 Add and subtract numbers mentally, including: a three-digit number and ones, a three-digit number and tens, a three-digit number and hundreds.	Y4 Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction.		
Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction. Solve problems including missing	Solve addition and subtraction two- step problems in contexts, deciding which operations to use and why.			
number problems using number facts,				
place value and more complex addition				
and subtraction.			\quad	
:---				

Calculations within Milestone Three:

Methods	Add and subtract whole numbers with more than 4 digits, including using formal written methods. (columnar addition and subtraction) Add and subtract numbers mentally with increasingly large numbers	
Complexity	Solve multi-step addition and subtraction problems in contexts, deciding which operations and methods to use and why.	
	Y5 Add and subtract whole numbers with more than four digits, including using formal written methods (columnar addition and subtraction). Solve addition and subtraction multi-step problems in contexts, deciding which operations to use and why.	Y6 To undertake mental calculations with increasingly large numbers and more complex calculations. Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

At North Duffield Primary School, we follow the Chris Quigley Essentials for Learning philosophy whilst using a very concrete - pictorial - abstract approach to teaching numeracy. We show and use concrete examples with the children to make it 'real' to them, before moving onto using pictorial representations of these. Finally, we move onto the abstract representation of the concepts. We can revisit any of the stages at any point, should we feel that an individual child or group of children needs reinforcement or further practice.

The following pages give an insight to the progression across all year groups and milestones at our school with examples of how concrete - pictorial - abstract can be used to teach calculations.

Page $5 \quad$ Progression in calculations across year groups Reception - Y6
Pages 6-9 Addition
Pages 10-14 Subtraction
Pages 15-20 Multiplication
Pages 21-27 Division

Progression in each calculation

	Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Counting a set of objects. Knowing 1 more or 1 less Place numbers in order of size	Combining two parts to make a whole: part whole model Starting at the bigger number and counting on Regrouping to make 10	Adding three single digits. Column method no regrouping	Column methodregrouping. (up to 3 digits)	Column methodregrouping. (up to 4 digits)	Column methodregrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column methodregrouping. (Decimals- with different amounts of decimal places)
Subtraction	One less than / Taking away ones	Taking away ones Counting back Find the difference Part whole model Make 10	Counting back Find the difference Part whole model Make 10 Column method- no regrouping	Column method with regrouping. (up to 3 digits)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method with regrouping. (Decimals- with different amounts of decimal places)
Multiplication	Doubling	Doubling Counting in multiples Arrays (with support)	Doubling Counting in multiples Repeated addition Arrays- showing commutative multiplication	Counting in multiples Repeated addition Arrays- showing commutative multiplication Grid method	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4-digit numbers multiplied by 1 or 2 digits)	Column multiplication (multi digit up to 4 digits by a 2-digit number)
Division	Halving	Sharing objects equally Division as grouping	Division as grouping Division within arrays	Division within arrays Division with a remainder Short division (2 digits by 1 digitconcrete and pictorial)	Division within arrays Division with a remainder Short division (up to 3 digits by 1 digit- concrete and pictorial)	Short division (up to 4 digits by a 1-digit number interpret remainders appropriately for the context)	Short division Long division (up to 4 digits by a 2-digit numberinterpret remainders as whole numbers, fractions or round)

Addition

Yr/ Stage	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
$\begin{array}{\|l} \text { Stage } \\ \underline{1} \\ \text { Yr R } \end{array}$	Counting a set of objects Knowing 1 more or 1 less Place numbers in order of size	One more One less Bigger Larger			
Stage 2 Yr R + 1	Combining two parts to make a whole: part-whole model	Addition Sum Total Parts and wholes Plus Add Altogether More than Equal to Same as	Use cubes to add two numbers together as a group or in a bar:	Use pictures to add two numbers together as a group or in a bar: 8	Use the part-part whole diagram as shown to move into the abstract: $\begin{aligned} & 4+3=7 \\ & 10=6+4 \end{aligned}$

$\mathrm{Yr} /$ Stage	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
Stage $\underline{3}$ Yr 1	Start at the bigger number and count on		Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Start at the larger number on the number line and count on in ones or in one jump to find the answer. $12+5=7$	Place the larger number in your head and count on the smaller number to find your answer. $5+12=17$
$\begin{aligned} & \frac{\text { Stage }}{\underline{4}} \\ & \text { Yr } 1 \end{aligned}$	Regrouping to make 10	Regroup Partition	Regroup $9+3$ into $10+2$ before adding together: Start with the larger number and use the smaller number to make 10 $6+5=11$	Use pictures or a number line. Regroup or partition the smaller number to make 10 before adding. $3+9=$ $9+5=14$ Children move on to using an 'empty number line'. E.g. $7+5$ becomes $7+3+2$	$7+4=11$ If I am at seven, how many more do I need to make 10 ? How many more do I add on now? $7+5=7+3+2=12$

$\begin{aligned} & \text { Yr/ } \\ & \text { Stage } \end{aligned}$	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
Stage 5 Yr 2	Adding three single digits	Addition Sum Total Parts and wholes Plus Add Altogether More than Equal to Same as	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Stage 6 Yr 2	Column additionwithout regrouping	Regroup Partition	Partition the numbers into tens and ones using base 10 blocks, place value counters. Add together the ones first then add the tens. Finally add the 2 totals together.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. $32+23=55$	$\begin{array}{r} 21+42= \\ 21 \\ +\underline{42} \end{array}$ Record the calculation vertically adding the column of ones then the column of tens.

Subtraction

$\begin{aligned} & \text { Yr/ } \\ & \text { Stage } \end{aligned}$	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
Stage 1 Yr R Yr 1	One less than / Taking away ones	One less Take away Less than The difference Subtract Minus Fewer Decrease	Use physical objects, counters, cubes numicon, etc, to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $4-2=2$	$\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$ Although number sentences are recorded in the concrete and pictorial methods children are introduced to them on their own while encouraging them to mentally take away ones.
$\begin{aligned} & \underline{\text { Stage }} \\ & \underline{\mathbf{2}} \\ & \operatorname{YrR} \\ & \operatorname{Yr} 1 \\ & \operatorname{Yr} 2 \end{aligned}$	Counting back	One less Take away Less than The difference Subtract Minus Fewer Decrease	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2-digit numbers.	For 13-4, put 13 in your head and count back 4. What number are you at? Use your fingers to help.

$\begin{aligned} & \text { Yr/ } \\ & \text { Stage } \end{aligned}$	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
Stage 3 Yr 1 Yr 2	Find the difference	One less Take away Less than The difference Subtract Minus Fewer Decrease	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference. Use basic bar models with items to find the difference.	Count on to find the difference: Draw bars to find the difference between 2 numbers. Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Stage 4 Yr 1 Yr 2	Part Whole Model	Part Whole Inverse	Link to addition - use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part whole model.	5 10 Move to using numbers within the part whole model.

$\begin{aligned} & \mathrm{Yr} / \\ & \text { Stage } \end{aligned}$	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
Stage 5 Yr 1 Yr 2	Make 10	Ten frame Remaining Take off Count back	$14-5=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .	Start at 13 . Count back 3 to reach 10. Then count back the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the previous 10? (6) How many do we have left to take off? (2)
Stage 6 Yr 2	Column method without regrouping	Column Partition Larger	$75-42$ Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again, make the larger	Draw the Base 10 or place value counters alongside the written calculation to help to show working:	Partitioned numbers are written vertically: For 54-22 $\begin{array}{cc} \text { Tens } & \text { Ones } \\ 50 & 4 \\ -\quad 20 & 2 \\ \hline 30+\frac{2}{30}=32 \end{array}$ This will lead to a clear written column subtraction: $\begin{array}{r} 32 \\ -\quad 12 \\ \hline 20 \end{array}$

Multiplication

$\begin{aligned} & \text { Yr/ } \\ & \text { Stage } \end{aligned}$	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
$\begin{aligned} & \underline{\text { Stage }} \\ & \underline{\mathbf{1}} \\ & \text { Yr R } \\ & \text { Yr } 1 \\ & \text { Yr } 2 \end{aligned}$	Doubling	Double Count on (from, to) Count back (from, to Count in ones, twos, tens... Is the same as	Use practical activities to show how to double a number.	Draw pictures to show how to double a number.	Partition a number and then double each part before recombining it back together. $4 \times 2=8$
Stage 2 Yr R Yr $1+$ Yr 2 (x2,5, 10) Yr3 (x3, 4, 8)	Counting in multiples	Multiplied by The product of Groups of Lots of Is equal to	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count out loud in multiples of a number. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Yr/ Stage	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
Stage $\underline{3}$ Yr 2 Yr 3	Repeated addition		Use different objects to add equal groups. $3+3+3$	There are 3 plates. Each plate has 2-star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 Repeated addition can be shown on a labelled or empty number line. Eg $5+5+5=15$: 0123456789101112131415 Begin to relate repeated addition to multiplication using 'lots of'. e.g. 3 lots of $5=15$	Write addition sentences to describe objects and pictures. This then leads to writing related multiplication sentences e.g. $2 \times 5=10$

$\mathrm{Yr} /$ Stage	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
$\begin{aligned} & \frac{\text { Stage }}{\underline{4}} \\ & \text { (Yr 1) } \\ & \text { Yr } 2 \\ & \text { Yr } 3 \end{aligned}$	Arrays - showing commutative multiplication	Array Commutative	Create arrays using counters /cubes /numicon to show sentences. Eg $4 \times 6=24$ Begin to look at arrays in different orientations to make the link between. Eg $5 \times 3=15$ and $3 \times 5=15$ (commutativity)	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles:	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Division

$\mathrm{Yr} /$ Stage	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
Stage 1 Yr R	Halving	Half Halve Count out Share out Left Left over ...is the same as Equal		One sweet for you, one for me... Is it fair? How many do we each have?	$\begin{array}{r} 6+6=12 \\ \text { double } 6=12 \end{array}$
Stage 2 Yr R Yr 1	Sharing objects Equally	Share Group Divide Half Halve Count out Share out Left Left over Is the same as Is equal to	I have 10 cubes; can you share them equally into 2 groups? 15 shared between 5 is 3 :	Children use pictures or shapes to share quantities. How many groups of 4 are there in 12 stars?	Share 9 buns between three People: $9 \div 3=3$

$\mathrm{Yr} /$	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
Stage 3 Yr 1 Yr 2	Division as grouping	Equal groups	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. There are 10 sweets. How many people can h a ve 2 sweets each?	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. \square	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
Stage 4 Yr 2 Yr 3 Yr 4	Division within arrays	Array Inverse	Link division to multiplication by creating an array and thinking about the number sentences that can be created: $\begin{array}{lr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

Yr/ Stage	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
Stage 5 Yr 3 Yr 4	Division with a remainder	Remainder Equal jumps	$14 \div 3=$ Divide objects into groups or share equally and see how much is left over:	Draw dots and group them to divide an amount and clearly show a remainder: Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. $13 \div 4=3 r 1$ As knowledge of place value improves, children can begin to jump in multiples of 10 : $63 \div 2=30 r 3$	Children use knowledge of times table facts to quickly calculate divisions involving remainders. For example: $27 \div 5=5 r 2$ Go on to combining knowledge of times tables with place value to calculate more difficult divisions. For example: $137 \div 4=34 r 1$

$\mathrm{Yr} /$ Stage	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
Stage 7 Yr6 (up to 4 digits by a 2 digit remainder. Interpret remainder as whole numbers, fractions or round)	Long division		It is recommended that instead of using physical counters, students can draw the counters and circle the groups on a whiteboard or in their books. If needed: $71 \div 3=$ Using Base 10 or place value counters, we start with 7 tens and 1 one, to be divided into 3 groups. We can put 2 tens in each group, so we write a 2 in the ten's column. In all, we've put 6 tens into the groups (3×2 tens), so we write 6 tens (60) below. We are left with 11 (1 ten and 1 one). We will need to exchange the ten for 10 ones so we can put 3 ones in each group (using 9 ones in all), and we will have a remainder of 2 .	Use this method to explain what is happening and as soon as they have understood what move on to the abstract method as this can be a time consuming process: Eg. $2544 \div 12$ How many groups of 12 thousands do we have? None Exchange 2 thousand for 20 hundreds: How many groups of 12 are in 25 hundreds? 2 groups. Circle them.	$432 \div 15$ becomes 15 \qquad $432 \div 15$ becomes 1 $\mathbf{2}$ $\mathbf{8}$ $\mathbf{4}$ $\mathbf{3}$ $\mathbf{2}$ 3 0 0 15×20 1 3 2 1 2 0 15×8 1 2 Answer: $28 \frac{4}{5}$ $\frac{12}{15}=\frac{4}{5}$

