Week	Objective	Strands	Milestone 2	Basic	Advance	Deep
1	To Know and use numbers	- Counting	- Count in multiples of 2-9 - Count in multiples of 25,50 , 100 and 1000 - Find 100 more or less than a given number.	With concrete objects, there is counting in multiples of 2,5 , 100, 1000.	There is counting in multiples of $2,3,4,5,25,50,100$ and 1000. Generally, there is counting in multiples of 2 to 9.	There is independent and fluent counting in multiples of 2 to $9,25,50,100$ and 1000.
		- Counting	- Count backwards through zero to include negative numbers.	With support from a teacher there is some evidence of finding 1000 more or less than some numbers.	Generally, 1000 more or less than a given number is found.	1000 more or less than a given number, including negative numbers, can be found.
2	To Know and use numbers	- Comparing	- Order and compare numbers beyond 1000.	There is a process of counting backwards to zero but prompts may be needed.	With support if necessary, there is counting backwards to zero and through zero and negative numbers are recognised.	There is fluent counting backwards through zero to negative numbers.
			- Recognise the place value of each digit in a fourdigit number. (thousands, hundreds, tens, and ones)	The place value of each digit in a two- digit whole number is recognised. With reminders, the place value of each digit in a threedigit number is recognised.	The place value of each digit in a four- digit whole number is recognised.	Generally, the place value of each digit in a four- digit whole number. Some decimal numbers are recognised, e.g. in the number 132.73, the value of the number 7 is understood as $7 / 10$ ths.
		- Place Value	- Round any number to the nearest 10, 100 or 1000.	When models or frameworks are provided, any number is rounded to the nearest 10 or 100.	Generally, any number is rounded accurately to the nearest 10, 100 or 1000.	Independently, any number is rounded to the nearest 10, 100, 1000 and rounding to the nearest 10,000 or 100,000 is generally accurate.

Week	Objective	Strands	Milestone 2	Basic	Advance	Deep
3	To Know and use numbers	- Representing	- Identify, represent and estimate numbers using different representations.	With support, numbers are represented as a collection of ones, groups of ten and groups of 100 . With support estimation is attempted.	Generally, numbers are represented both pictorially and in writing in groups of ones, tens and hundreds. Estimation is generally accurate.	Numbers independently represented in a variety of written and pictorial forms. Estimation is accurate and justified.
			- Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value	With support, Roman numerals on a clock can be read.	With reminders, Roman numerals to 100 (l to C) are read.	Independently, Roman numerals are read up to 100 (C) and years written in Roman form are deciphered.
		- Solve Problems	- Solve number and practical problems with increasingly large positive numbers.	With concrete objects, apparatus and guidance, number problems can be solved. Equipment is beginning to be chosen to help solve problems.	With occasional prompts, number and practical problems with large positive numbers are solved. Patterns in results are looked for when problem solving. Generally, there is a secure awareness of which operation to use when solving problems.	Systematically and in an organised manner, number and practical problems (with increasingly large positive number) can be solved independently. Discussion is used to break down a problem. The operation needed in order to solve problems is identified independently.
4	To Add and Subtract	- Complexity	- Solve two-step addition and subtraction problems in contexts, deciding which operations and methods to use and why.	With the support of a teacher and practical apparatus, two-step addition and subtraction problems are solved.	Two- step problems, involving addition and subtraction, are solved in different contexts. When reminders are given, the most appropriate operations and methods are chosen and used to solve problems.	Two- step problems in contexts, involving addition and subtraction, are systematically solved. The most appropriate method and operations are chosen and used to solve two-step addition and subtraction problems independently.
		- Using number facts	- Solve problems, including missing number problems, using number facts, place value and more complex addition and subtraction.	There is an awareness of how to solve twostep problems using number facts and place value. With the support of a teacher, simple missing number problems can be solved using number facts and place value.	Generally, two- step number problems, including missing number problems, are tackled and solved using number facts, place value and addition and subtraction.	Independently, two- step number problems, including missing number problems and balancing equations, are solved using more complex addition and subtraction.

Week	Objective	Strands	Milestone 2	Basic	Advance	Deep
		- Methods	- Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	With the support of a teacher, the correct formal written methods are used to add and subtract numbers up to four- digits.	Generally, the formal written methods of columnar addition and subtraction are used to add and subtract numbers up to fourdigits.	Independently, the columnar addition and subtraction methods are used to add and subtract numbers with up to four- digits correctly.
5	To Add and Subtract	- Methods	Add and subtract numbers mentally, including: - A three-digit number and ones. - A three-digit number and tens. - A three-digit number and hundreds.	With prompts, three- digit numbers and ones are added and subtracted mentally.	Three- digit numbers and ones and three- digit numbers and tens are added and subtracted mentally. Reminders may be needed to address mistakes. With prompts, three- digit number and hundreds are added and subtracted mentally.	Three- digit numbers and ones, three- digit numbers and tens and three- digit numbers and hundreds are added and subtracted mentally and quickly. Generally, four- digit numbers and ones, tens or hundreds are added and subtracted mentally.
		- Checking	- Estimate and use inverse operations to check answers to a calculation.	When help or structure is provided, the inverse operations are used to check answers to a calculation.	Generally, during problem solving, work is checked and corrections are made. Generally, inverse relationships are used to find missing numbers in a number sentence and to check answers to a calculation.	Work is checked and corrections are made independently during problem solving. Without support, inverse relationships are used to find missing numbers in a number sentence and to check answers to a calculation.
6	To multiply and divide	- Complexity	- Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems (such as n objects are connected to m objects).	Using pictorial representations, concrete objects and at times the support of a teacher, simple multiplication and division problems are solved.	Generally there is an understanding of the distributive law: multiplying a number by a group of numbers added together is the same as doing each multiplication separately, e.g. $3(2+4)=32+34$. The distributive law and other multiplication and addition methods are used to solve: Problems involving multiplying two- digit numbers by a one- digit number Integer scaling problems Correspondence problems.	The distributive law and other multiplication and addition methods are used to solve: Problems involving multiplying two- digit numbers by a onedigit number without support. Problems involving multiplying three- digit numbers by a one- digit number without support. - Integer scaling problems without support. - Harder correspondence problems without support.

Week	Objective	Strands	Milestone 2	Basic	Advance	Deep
		- Methods	- Multiply two-digit and threedigit numbers by a one-digit number using formal written layout.	Using practical apparatus, two- digit numbers are multiplied by a one- digit number. With support calculations are represented using a formal written layout.	Two- digit numbers can be multiplied and divided by a one- digit number, using formal written layout accurately. With reminders, three- digit numbers can be multiplied and divided by a one- digit number, using formal written layout.	Independently, two- digit and three- digit numbers are multiplied by a one- digit number using formal written layout correctly.
7	To multiply and divide	- Methods	- Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers.	With the support of a teacher and the use of concrete objects, two- digit numbers can be multiplied and divided by $2,3,4$ and 5 . When reminders of strategies to support are given, simple multiplication and division facts can be solved mentally, including multiplying and dividing by 1 .	Generally, place value and known multiplication and division facts are used to divide and multiply mentally, including multiplying by 0 and 1. Two- digit numbers can be multiplied by 2, 3, 4 and 5 mentally. Generally, three numbers can be multiplied together. Two- digit and three- digit numbers are multiplied by 0 and 1 and two- digit and threedigit numbers are divided by 1 mentally with reminders occasionally needed.	The following mental calculations occur independently: - multiplying two- digit and three- digit numbers by 0 and 1 dividing two- digit and three digit numbers by 1 multiplying together three numbers. Place value and known multiplication and division facts are used to divide and multiply mentally, including multiplying by 0 and 1 .
			- Recognise and use factor pairs and commutativity in mental calculations.	With the support of a teacher and pictorial representations, factor pairs are recognised.	Generally, factor pairs in mental calculations are used and recognised, e.g. $1 \times 48=48$, $2 \times$ $24=48,3 \times 16=48$.	Factor pairs in mental calculations are used and recognised, e.g. $1 \times 48=48$, 2 $\times 24=48,3 \times 16=48$
8	To multiply and divide	- Checking	- Recognise and use the inverse relationship between multiplication and division and use this to check calculations and solve missing number problems.	There is an awareness of the inverse relationship between multiplication and division. With the support of a teacher, this is used to solve problems and at times check calculations. With support, division facts can be found from a known multiplication fact.	The inverse relationship between multiplication and division is recognised. With some support, the inverse relationship between multiplication and division is used to solve problems and check calculations. Division facts can be found from a known multiplication fact.	The inverse relationship between multiplication and division is used to check calculations and to solve problems independently.

Week	Objective	Strands	Milestone 2	Basic	Advance	Deep
		- Using multiplication and division facts	- Recall multiplication and division facts for multiplication tables up to $12 \times$ 12.	Generally, multiplication and division facts for multiplication tables 2, 5 and 10 are recalled. With support, multiplication and division facts are recalled for 3 and 4 multiplication tables.	Multiplication and division facts are recalled for $2,3,4$, 5 and 10 multiplication tables at speed. Generally and with a few reminders or corrections, multiplication and division facts for multiplication tables up to 1212 can be recalled.	Multiplication and division facts for multiplication tables up to 1212 are recalled at speed. Multiplication and division questions involving multiples of $10,100,1000$, etc. are answered by using times table facts, e.g. $6 \times 6=36$ so $60 \times 6=360$.
9	Fractions (including decimals, percentages , ratio and proportion)	- Recognising fractions	- Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators.	With concrete objects and pictorial images, and the support of a teacher, , 1/3 and of a discrete set of objects are found.	When reminded, , $1 / 3$ and $1 / 5$ of a discrete set of objects are generally recognised and used. With support non unit fractions are recognised and used (eg 2/3)	Fractions of a discrete set of objects or numbers are recognised independently. Non unit fractions of a discrete set of objects or numbers are identified.
			Recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators.	-	-	-
10	Fractions (including decimals, percentages , ratio and proportion)	- Recognising fractions	- Round decimals with one decimal place to the nearest whole number.	With support decimals with one place are rounded to the nearest whole number.	When prompted decimals with one place are rounded to the nearest whole number.	Independently decimals with one place are rounded to the nearest whole number. Generally decimals with two places are rounded to the nearest whole number.
		-	- Compare numbers with the same number of decimal places up to two decimal places.	With support, two numbers with two decimal places are ordered correctly.	Generally any sets of numbers with two decimal places are ordered correctly.	Independently, any sets of numbers with two decimal places are ordered correctly. Generally, any sets of numbers with three decimal places are ordered correctly.

Week	Objective	Strands	Milestone 2	Basic	Advance	Deep
11	Fractions (including decimals, percentages , ratio and proportion)	- Recognising fractions	- Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 .	Within the context of counting money and metric measures, there is an emerging understanding that tenths arise from dividing a measure into 10 equal parts and from dividing onedigit numbers or quantities by 10 .	Generally, the metric measure system is used to count in tenths and to explain that tenths arise from dividing a measure into 10 equal parts. With support, one digit numbers or quantities are divided by 10 .	One digit numbers or quantities are independently divided by 10 .
		-	Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.	With support, counting up and down in tenths and hundredths is correct.	Generally, counting up and down in tenths and hundredths is correct. It is generally recognised that tenths or hundredths arise from dividing an object into 10 or 100 equal parts and from dividing onedigit numbers or quantities by 10 or 100 .	Counting up and down in tenths and hundredths is correct and takes place independently. It is recognised that tenths and hundredths arise from dividing an object into 10, 100 equal parts and from dividing onedigit numbers or quantities by 10 or 100. Generally counting up and down in thousandths is accurate.
		-	- Compare and order unit fractions and fractions with the same denominators.	With support from the teacher, along with pictorial representations, unit fractions and fractions with the same denomination are ordered.	Generally, unit fractions and fractions with the same denominators are ordered.	Unit fractions and fractions with the same denominators are compared and ordered. Generally, non- unit fractions are ordered correctly.
12	Fractions (including decimals, percentages , ratio and proportion)	- Equivalence	- Recognise and show, using diagrams, families of common equivalent fractions.	With the support of a teacher and by using diagrams, families of common equivalent fractions are recognised.	Families of common equivalent fractions, e.g. $1 / 2$ is equivalent to $2 / 4,3 / 6,4 / 8$, etc., are recognised and shown.	Families of common equivalent fractions, e.g. $1 / 2$ is equivalent to $2 / 4,3 / 6,4 / 8$, etc., are recognised and shown independently.
		-	- Recognise and write decimal equivalents of any number of tenths or hundredths.	With the support of a teacher, a decimal equivalent to $1 / 10$ is recognised	Generally, decimal equivalents of any number of tenths is recognised and written. With support from a teacher, decimal equivalents of any number of hundredths is recognised and written.	Decimal equivalents of any number of tenths or hundredths is recognised and written. Balancing equations are beginning to be solved.

Week	Objective	Strands	Milestone 2	Basic	Advance	Deep
		-	Recognise and write decimal equivalents to $1 / 4,1 / 2,3 / 4$.	There is an emerging understanding of the decimal equivalent to $1 / 4$.	Generally, decimal equivalents to $1 / 4,1 / 2$ and $3 / 4$ are recognised and written correctly.	Decimal equivalents to $1 / 4$, and $3 / 4$ are recognised and written correctly and independently. With support, decimal equivalents of $1 / 3$ and $2 / 3$ are recognised and written.
13	Fractions (including decimals, percentages , ratio and proportion)	- Solving problems	- Add and subtract fractions with the same denominator within one whole.	With concrete objects and pictorial representations, fractions with the same denominator within one whole are added and subtracted, e.g. $2 / 7+3 / 7=$ 5/7.	With reminders of processes fractions with the same denominator within one whole are added and subtracted.	Fractions with the same denominator within one whole are added and subtracted independently.
		-	- Solve problems involving increasingly harder fractions.	With the support of a teacher, there is problem solving involving $1 / 2$ and $1 / 4$ as a fraction, decimal and percentage.	Generally, fractions with the same denominator are added and subtracted correctly, e.g. $1-3 / 4=1 / 2$	Problems involving increasingly harder fractions, such as improper fractions, fractions with different denominations, etc. are solved.
		-	- Calculate quantities and fractions to divide quantities (including non-unit fractions where the answer is a whole number).	-	-	-
14	Fractions (including decimals, percentages , ratio and proportion)	- Solving problems	- Add and subtract fractions with the same denominator.	With concrete objects and pictorial representations, fractions with the same denominator within one whole are added and subtracted, e.g. $2 / 7+3 / 7=$ 5/7.	With reminders of processes fractions with the same denominator within one whole are added and subtracted.	Fractions with the same denominator within one whole are added and subtracted independently.
		-	- Find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths.	With the support of a teacher and practical apparatus, the effect of dividing a one- or two- digit number by 10 is found and the value of the digits in the answer are	With prompts, the effect of dividing a one- or two- digit number by 10 and 100 is found and the value of the digits in the answer are identified as ones, tenths and	Independently, the effect of dividing a one- or two- digit number by 10, 100 or 1000 is found and the value of the digits in the answer are identified as ones, tenths,

Week	Objective	Strands	Milestone 2	Basic	Advance	Deep
				identified as ones, tenths and hundredths.	hundredths, e.g. $136 \div 100=$ 1.36 and the value of the number 3 in the answer is 3 tenths.	hundredths and thousandths.
		-	- Solve simple measure and money problems involving fractions and decimals to two decimal places.	When models are provided, such as concrete objects and pictorial images, measure and money problems involving fractions and decimals to two decimal places are solved.	Generally, simple measure and money problems involving fractions and decimals to two decimal places are solved.	Measure and money problems involving fractions and decimals to two decimal places are solved independently. Generally problems involving decimals to three decimal places are solved.
15	To understand the properties of shapes	blank	- Draw 2-D shapes and make 3D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them.	With guidance, 2- D shapes can be drawn and 3- D shapes made using modelling materials. Basic properties, e.g. number of sides, lines of symmetry, etc., are described.	Generally, 2- D shapes can be drawn and 3- D shapes made using modelling materials. 3D shapes in different orientations are recognised.	2- D shapes can be drawn and 3- D shapes made using modelling materials. 3- D shapes in different orientations are recognised without support.
			- Recognise angles as a property of shape or a description of a turn.	With support, turns of 90 degrees are recognised.	Generally, angles, as a property of shape, are recognised and described, including 90 and 180, degrees.	Angles, as a property of shape or description of a turn, are recognised and described, including 90, 180, 270 and 360 degrees.
			- Identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle.	With support, right angles can be identified and angles which are greater than or less than a right angle are identified.	Generally, right angles, obtuse angles and acute angles are identified, compared and ordered correctly and the correct terminology is used. Right- angled or equilateral triangles are recognised. When reminders are given, isosceles and scalene triangles are identified.	Right angles, obtuse angles, acute angles and reflex angles are identified correctly and independently. Angles as a measure of a turn are recognised, e.g. there is a secure understanding that 180° (two right angles) is a half turn, 270° (three right angles) is three quarters of a turn and that 360° (four right angles) is a whole turn.

Week	Objective	Strands	Milestone 2	Basic	Advance	Deep
16	To understand the properties of shapes	blank	- Identify horizontal and vertical lines and pairs of perpendicular and parallel lines.	Horizontal and vertical lines are identified correctly.	Horizontal and vertical lines are identified independently and pairs of perpendicular and parallel lines are generally identified correctly.	Horizontal and vertical lines and pairs of perpendicular and parallel lines are identified correctly and without support
			- Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes.	When prompts are given, geometric shapes, including triangles and quadrilaterals, are classified. With support from a teacher, different types of triangles, such as equilateral, scalene, isosceles and right- angled, are classified. With the support of a teacher, the net for a cube is created.	Geometric shapes, including triangles and quadrilaterals, are generally classified. With help, there is classification of triangles into equilateral, scalene, isosceles and right- angled triangles, using the properties of shape.	Geometric shapes, including triangles and quadrilaterals are classified and there is classification of triangles into equilateral, scalene isosceles and right- angled triangles, using the properties of shape.
			- Identify acute and obtuse angles and compare and order angles up to two right angles by size.	With support from a teacher, the terminology acute and obtuse is beginning to be used.	Generally, angles are compared and ordered up to 180 degrees. Generally, the language of obtuse and acute angles is used in describing angles.	Angles are independently ordered and compared.
17	To understand the properties of shapes	blank	- Identify lines of symmetry in 2D shapes presented in different orientations.	Lines of symmetry in simple 2D shapes, such as squares, rectangles and equilateral triangles, are identified with support.	Generally, lines of symmetry in 2- D shapes presented in different orientations are identified.	Lines of symmetry in 2- D shapes presented in different orientations are identified correctly and independently. When using a vertical or horizontal line of symmetry, symmetric figures are completed.
			- Complete a simple symmetric figure with respect to a specific line of symmetry.	With the support of a teacher and when using a vertical line of symmetry, simple symmetric figures are completed.	With prompts and when using a vertical or horizontal line of symmetry, simple symmetric figures are completed.	Generally, shapes can be reflected at 45° to a mirror line.

Week	Objective	Strands	Milestone 2	Basic	Advance	Deep
18	To describe position, direction and movement	blank	- Recognise angles as a property of shape and as an amount of rotation.	With the support of a teacher, angles are recognised as a property of shape. With support, rotations of 90 or 180, can be related to and turns.	Angles are recognised as a property of shape and as an amount of rotation .	Angles are recognised as a property of shape and as an amount of rotation, without support.
			- Identify right angles, recognise that 2 right angles make a half turn and 4 make a whole turn.	-	-	-
			- Identify angles that are greater than a right angle.	With support, angles greater than 90 degrees are recognized and described as obtuse.	Angles that are greater than a right angle are identified and called obtuse angles. With support, angles greater than 180 degrees are described as reflex angles.	Angles are sorted in terms of less than, equal to or greater than a right angle. The terminology of acute, right angle, obtuse and reflex is used to describe angles.
19	To describe position, direction and movement	blank	- Describe positions on a 2-D grid as coordinates in the first quadrant.	The x and y axis are identified on a coordinate grid. When help or structure is provided, positions on a 2- D grid, as coordinates in the first quadrant, e.g. $(2,2)$, are described.	Positions on a 2- D grid, as coordinates in the first quadrant, e.g. (2,2), are described and plotted.	Positions on a 2- D grid, as coordinates in the first, second, third or fourth quadrant, e.g. (-2,2) are described.
			- Describe movements between positions as translations of a given unit to the left/right and up/down.	There is an awareness of the following terminology for position, direction and movement: left/right, clockwise/anticlockwise, 90° to give directions.	The following directional terminology: left/right, clockwise/anticlockwise, 90°, is understood and used correctly to describe position, direction and movement.	Shapes can be reflected on a vertical and horizontal mirror line independently. Movements between positions, as translations of a given unit, are described and translations using vectors are plotted.

Week	Objective	Strands	Milestone 2	Basic	Advance	Deep
			- Plot specified points and draw sides to complete a given polygon.	With support from the teacher and structured activity provided, specific points are plotted on a coordinate grid to complete a triangle or square.	When guidance is provided, specified points are plotted on a coordinate grid and sides are drawn to complete a given polygon, e.g. a hexagon.	Independently, specified points are plotted on a coordinate grid and sides are drawn to complete a given polygon, e.g. a hexagon.
20	To use measures	blank	- Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity ($/ 1 / \mathrm{ml}$).	With support, measurements are taken and recorded. With support and practical apparatus, measurements are added and subtracted.	Generally, Measurement scales are understood and measurements are taken and recorded. Generally, a series of measurements are added and subtracted.	Independently, a wide range of measures are taken and recorded accurately. Addition and subtraction problems involving measures are independently completed.
			- Measure the perimeter of simple 2-D shapes.	The terms area and perimeter are beginning to be understood. With support, the perimeter of simple 2- D shapes is measured in cm and m .	Generally, the terminology of area and perimeter is secure and used correctly. The perimeter of a rectilinear figure (including squares) in centimetres and metres is measured and calculated.	The terminology of area and perimeter is secure and used to calculate accurately.
21			- Add and subtract amounts of money to give change. ($£$ and p)	With the support of a teacher and with practical apparatus, amounts of money can be added and subtracted to give change within one pound.	Generally, amounts of money can be added and subtracted to give change.	Amounts of money can be added and subtracted to give change confidently and correctly.
22	To use measures	blank	- Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks.	With the support of a teacher, the time can be understood from an analogue clock, including when using Roman numerals.	With reminders, times are read, written and converted between analogue and digital 12- and 24hour clocks, (e.g. 3:00 o'clock - 15:00hrs).	Without support, times are read, written and converted between analogue and digital 12- and 24- hour clocks, (e.g. 3:00 o'clock - 15:00hrs).

Week	Objective	Strands	Milestone 2	Basic	Advance	Deep
			- Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use appropriate vocabulary.	With the support of a teacher, a 12- hour clock can be read and time duration within the hour estimated.	Generally, time is estimated to the nearest minute, five minutes, quarter, half and three quarters of an hour. Time is compared and recorded, and the correct vocabulary is used: hours, minutes, seconds, etc.	Generally, time is estimated to the nearest minute, five minutes, quarter, half and three quarters of an hour.
			- Know the number of seconds in a minute and the number of days in each month, year and leap year.	With support, the number of seconds in a minute and the number of days in a year is remembered.	The number of seconds in a minute and the number of days in each month, year and leap year are remembered, with prompts when necessary.	The number of seconds in a minute and the number of days in each month, year and leap year are remembered independently.
23	To use measures	blank	- Compare durations of events.	With support, the number of seconds in a minute and the number of days in a year is remembered.	The number of seconds in a minute and the number of days in each month, year and leap year are remembered, with prompts when necessary.	The number of seconds in a minute and the number of days in each month, year and leap year are remembered independently.
			- Convert between different units of measure. (for example, kilometre to metre; hour to minute)	With support some conversions between different units are completed.	Generally, conversions of $£$ to pence, Km to m and other simple conversions are completed.	Without support, conversions between wide varieties of different units of measure are completed accurately.
			- Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres.	By counting squares inside a shape, the area of rectilinear shapes can be found.	generally the area and perimeter of rectilinear shapes is found by counting squares.	The area and perimeter of rectilinear shapes are measured and calculated independently.
24	To use measures	blank	- Find the area of rectilinear shapes by counting squares.		-	-

Week	Objective	Strands	Milestone 2	Basic	Advance	Deep
			- Estimate, compare and calculate different measures, including money in pounds and pence.	With support estimation, comparisons and calculations of a range of measures is undertaken.	Generally, accurate estimation, comparisons and calculations of different measures are completed.	Without support, estimation is used to help calculate in the context of measures. Ordering and comparing of different measures is undertaken independently and accurately.
25	To use measures	blank	- Read, write and convert time between analogue and digital 12- and 24 -hour clocks.	With the support of a teacher, the time can be understood from an analogue clock, including when using Roman numerals.	With reminders, times are read, written and converted between analogue and digital 12- and 24hour clocks, (e.g. 3:00 o'clock - 15:00hrs).	Without support, times are read, written and converted between analogue and digital 12- and 24- hour clocks, (e.g. 3:00 o'clock - 15:00hrs).
			- Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.	With concrete objects and the support of a teacher, there are simple conversions between different units of measure, e.g. hours to minutes and cm to metres.	With some guidance, problems involving converting from hours to minutes, minutes to seconds, years to months, weeks to days are solved.	Problems involving converting from hours to minutes, minutes to seconds, years to months, weeks to day are solved independently Lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$), mass (kg / g) and volume/capacity (l/ml) are measured, compared, added and subtracted independently.
26	To use statistics	blank	- Interpret and present data using bar charts, pictograms and tables.	Pictograms, tally charts, block diagrams and simple tables are constructed and interpreted with the support of a teacher.	Generally, data can be interpreted and presented using bar charts, pictograms, tables Venn diagrams and Carroll diagrams.	Data can be interpreted and presented using bar charts pictograms, tables, Venn diagrams and Carroll diagrams without support.
			- Solve one-step and two-step questions (for example, 'How many more?' and 'How many fewer?') using information presented in scaled bar charts, pictograms and tables.	There is an understanding of the terminology many more and many fewer. Generally, one- step questions are solved using information presented in bar charts, pictograms and tables.	Generally, one- step and twostep questions are solved using information presented in bar charts, pictograms and tables.	One- step and two- step questions are solved independently using information presenting in bar charts, pictograms and tables.

Week	Objective	Strands	Milestone 2	Basic	Advance	Deep
27	To use statistics	blank	- Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs.	With support, questions about totalling and comparing categorical data are asked and answered.	When reminders are provided, the most appropriate choice as to how to present and collect data is made. There is an emerging understanding of the difference between discrete and continuous data.	The difference between discrete and continuous data is securely understood. (Discrete data is counted; continuous data is measured.) Discrete and continuous data can be presented and interpreted accurately using appropriate graphical methods. The most appropriate graphical methods are chosen independently.
			- Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	Generally, questions about information gathered can be asked for other children to answer.	Generally, discrete and continuous data can be presented and interpreted using appropriate graphical methods.	Comparison, sum and difference problems are solved using information presented in bar charts, pictograms, tables and other graphs.
28	To use algebra	blank	Solve addition and subtraction, multiplication and division problems that involve missing numbers.	With the support of a teacher and by using concrete objects and pictorial representations, simple addition, subtraction, multiplication and division problems are solved. Problems involving missing numbers are accessed when support is provided.	Addition, subtraction, multiplication and division problems, including missing number problems, are generally solved correctly by applying an understanding to a variety of routine and nonroutine problems. Patterns in results are looked for when solving problems.	Addition, subtraction, multiplication and division problems, including missing number problems, are solved by applying understanding to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.
29		-		-	-	-
30		-		-	-	-

