Week 12, Day 1
 Find common multiples and common factors.

Each day covers one maths topic. It should take you about 1 hour or just a little more.

1. If possible, watch the PowerPoint presentation with a teacher or another grown-up.

OR start by carefully reading through the
 Learning Reminders.
2. Tackle the questions on the Practice Sheet.

There might be a choice of either Mild (easier) or Hot (harder)!
Check the answers.

3. Finding it tricky? That's OK... have a go with a grown-up at A Bit Stuck?

4. Think you've cracked it? Whizzed through the Practice Sheets? Have a go at the Investigation...

Learning Reminders

Learning Reminders

Find common multiples and common factors.

1, 2, 4, 7, 14 and 28 all divide into 28 exactly.

```
    4\times7=28
    2\times14=28
    1 x 28=28
```

Although 28 is a bigger number than 24, it does not have as many factors as $24!$

Learning Reminders

Find common multiples and common factors.

Write as many factors as you can for each of

 these numbers.

[^0]
Practice Sheet Mild
 Common multiples and factors

Write a common multiple of each pair of numbers

1. 2 and 5
2. 3 and 4
3. 5 and 6
4. 5 and 10
5. 6 and 9
6. 5 and 12

Write a list of factors each pair of numbers have in common

1. 12 and 15
2. 15 and 30
3. 20 and 30
4. 16 and 24
5. 15 and 21
6. $\quad 18$ and 24

Practice Sheet Hot
 Common multiples and factors

Write a common multiple of each pair of numbers

1. 2 and 5
2. 3 and 4
3. 5 and 6
4. 5 and 10
5. 6 and 9
6. 5 and 12
7. 6 and 8
8. 7 and 8
9. 3 and 5
10. 8 and 12

Write a list of factors each pair of numbers have in common

1. 12 and 15
2. 15 and 30
3. 20 and 30
4. 16 and 24
5. 15 and 21
6. $\quad 18$ and 24
7. 42 and 56
8. 24 and 30
9. 32 and 48
10. 24 and 36

Challenge

Use dice or place value cards to create two 2-digit numbers. List any factors that these numbers have in common (other than 1).

Place Value Cards (sheet 1)

Practice Sheets Answers
 Multiplication and division

Common multiples and factors (mild)

Common multiples $1 \bigcirc=$ LCM)

1. (10, 20, 30, etc
2. 12, 24,36 , etc
3. $30,60,90$, etc
4. 10, 20, 30, etc
5. (18) 36,54 , etc
6. $60,120,180$, etc

Common factors $1 \bigcirc=$ HCF)

1. 1,3
2. $1,3,5,15$
3. $1,2,5,10$
4. $1,2,4,8$
5. 1,3
6. $1,2,3,6$

Common multiples and factors (hot)

Common multiples $\bigcirc=$ LCM

1. (10) 20,30 , etc
2. (12) 24,36 , etc
3. $30,60,90$, etc
4. (10) 20, 30, etc
5. (18) 36,54 , etc
6. 60, 120, 180, etc
7. 24, 48, 72, etc
8. $56,112,168$, etc
9. 15, 30,45 , etc
10. 24, 48, 72, etc

Common factors $(\bigcirc=\mathrm{HCF})$

1. 1,3
2. $1,3,5,15$
3. $1,2,5,10$
4. $1,2,4,8$
5. 1,3
6. $1,2,3,6$
7. $1,2,7,14$
8. $1,2,3,6$
9. $1,2,4,8,16$
10. $1,2,3,4,6,12$

Challenge

e.g. 42 and 91 . Both have 7 as a factor.

81 and 51 . Both have 3 as a factor.

A Bit Stuck? Times table puzzler

Work in pairs

Things you will need:

- A multiplication grid

What to do:

1. Tell your partner what each of these words mean, giving an example for each.
factor multiple
2. Now, with your partner, find at least one number to fit in each cell of this table. Do use the multiplication grid to help if needed.

	Factor of 36	Multiple of 5	Factor of 54	Multiple of 7
Odd				
Even				
Multiple of 3				

S-t-r-e-t-c-h:
Find a number on the multiplication grid with more than six factors.

Learning outcomes:

- I can find factors of numbers and multiples within known times tables.
- I am beginning to realise what sorts of numbers have many factors.

A Bit Stuck? Times table puzzler

\times	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	33	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

[^0]: A|uo ท! se ィəquinu әu!!」
 es! ε I ' $\varepsilon \tau$ pue $\tau: \varepsilon \tau$
 OZ pue OI 's ' ' ' ' ا : OZ

