Week 12, Day 3

Recognise and use square numbers and cube numbers

 Each day covers one maths topic. It should take you about 1 hour or just a little more.1. Start by carefully reading through the Learning Reminders.

2. Tackle the questions on the Practice Sheet. There might be a choice of either Mild (easier) or Hot (harder)!
Check the answers.

3. Finding it tricky? That's OK... have a go with a grown-up at A Bit Stuck?

4. Think you've cracked it? Whizzed through the Practice Sheets? Have a go at the Investigation...
5. Have I mastered the topic? Tackle the questions to Check your understanding.
Fold the page to hide the answers!

Learning Reminders

Recognise and use square numbers and cube numbers.

We can write 3×3 like this: 3^{2}

This means $\mathbf{3}$ multiplied by itself. It's like the little 2 we write after cm to show that each centimetre is squared.

$$
\begin{aligned}
& 3^{2}=9 \\
& 4^{2}=16 \\
& 5^{2}=25
\end{aligned}
$$

How will this sequence continue? Try it out before looking at the next page!

Learning Reminders

Recognise and use square numbers and cube numbers.

| If you ring the square | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| numbers on a times
 tables grid you get some
 interesting patterns... | $\times 1$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Learning Reminders

Recognise and use square numbers and cube numbers.

The cube is 3 cm by 3 cm by 3 cm .

We can find the number of 1 cm in this cube by multiplying 3 by 3 by $3 \ldots$....
$3 \times 3 \times 3=27$. We can write this as: $\mathbf{3}^{3}=27$. The small ' 3 ' means cubed.

We write 4 cubed as $4^{3} . \quad 4^{3}=4 \times 4 \times 4=64$.

Cube numbers get big very quickly!

We write 5 cubed as $5^{3} . \quad 5^{3}=5 \times 5 \times 5=125$

Practice Sheet Hot Square and cube numbers

Carry on marking this person's homework. Write the correct answers for any wrong answers at the side.

1. $2^{2}=4$
2. $3^{2}=6 \times 3^{2}=3 \times 3=9$
3. $5^{2}=25$
4. $4^{2}=8$
5. $10^{2}=100$
6. $\quad 9^{2}=18$
7. $7^{2}=48$
8. $6^{2}=36$
9. $8^{2}=64$
10. $\quad 2^{3}=8$
11. $3^{3}=9$
12. $5^{3}=125$
13. $4^{3}=64$
14. $7^{3}=21$
15. $8^{3}=512$
16. $\quad 10^{3}=100$
17. $6^{3}=216$
18. $9^{3}=629$

Challenge

Calculate square numbers up to 20^{2}.

Practice Sheets Answers

Square and cube numbers (mild)

1. The square numbers are:

$$
4,9,16,25,36,49,64,81,100
$$

2. $\quad 2^{3}=2 \times 2 \times 2=8$
$3^{3}=3 \times 3 \times 3=27$
$4^{3}=4 \times 4 \times 4=64$
$5^{3}=5 \times 5 \times 5=125$

Square and cube numbers (hot)

1. $\quad 2^{2}=4 \quad$,
2. $\quad 3^{2}=6 \times 3^{2}=3 \times 3=9$
3. $5^{2}=25$
4. $4^{2}=8 \times 4^{2}=4 \times 4=16$
5. $10^{2}=100 \sqrt{ }$
6. $\quad 9^{2}=18 \times 9^{2}=9 \times 9=81$
7. $7^{2}=48 \times 7^{2}=7 \times 7=49$
8. $\quad 6^{2}=36$
9. $8^{2}=64$
10. $\quad 2^{3}=8$

11. $3^{3}=9 \times 3^{3}=3 \times 3 \times 3=27$
12. $5^{3}=125$
13. $4^{3}=64$
14. $7^{3}=21 \times 7^{3}=7 \times 7 \times 7=343$
15. $\quad 8^{3}=512$
16. $10^{3}=100 \times 10^{3}=10 \times 10 \times 10=1000$
17. $6^{3}=216$
18. $9^{3}=629 \times 9^{3}=9 \times 9 \times 9=729$

A Bit Stuck?

Factors of square numbers

Write the factors of each number. Remember that factors come in pairs. Record them as pairs in similar shapes, e.g. 16: $1 \times 16,2 \times 8,4 \times 4$ (we only need to write the 4 once). The first one is done for you.

A Bit Stuck! Answers

Factors of square numbers

Factors of 9 are 1, 3, 9
Factors of 49 are 1, 7, 49
Factors of 25 are 1, 5, 25
Factors of 64 are 1, 2, 4, 8, 16, 32, 64
Factors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36

Check your understanding Questions

Ring the numbers that are the common factors of 12 and 18:

$$
\begin{array}{lllll}
2 & 3 & 6 & 9 & 12
\end{array}
$$

Write all the common multiples of 3 and 8 that are less than 50.

Using the digits 1, 5 and 6, make the following 2-digit numbers:

- a prime number;
- a common multiple of 5 and 13;
- a common factor of 60 and 90.

Put these values in order with the smallest first:

$$
\begin{array}{llll}
5^{2} & 3^{2} & 3^{3} & 2^{3}
\end{array}
$$

Check your understanding

Answers

Ring the numbers that are the common factors of 12 and 18:
236
9
12

12 and 18 are each divisible (without remainder) by all the highlighted numbers.

Write all the common multiples of 3 and 8 that are less than 50.
24, 48 Listing ALL the multiples of 3 and 8 less than 50 suggests that term 'common multiples' has not been understood.

Using the digits 1,5 and 6 , make the following 2-digit numbers:

- a prime number; 61
- a common multiple of 5 and 13; 65
- a common factor of 60 and 90. 15

Put these values in order with the smallest first:

$$
\begin{array}{llll}
5^{2} & 3^{2} & 3^{3} & 2^{3}
\end{array}
$$

$2^{3} 3^{2} 5^{2} 3^{3}$ which are equal to $8,9,25$ and 27 , respectively.

Check that children who haven't got this correct are not multiplying by 2 or 3 rather than squaring or cubing the numbers, e.g. thinking $2^{3}=6$.

